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Proofs
The central optimization problem to solve is given as

min
W∈Rnp×np

f(W ) with f(W) =
(1− λ)

4
‖WWT − P‖2 +

λ

4
‖WTW − C‖2 +

γ

2
‖W‖2. (1)

Solutions to the optimization problem
Theorem 1. For given P ∈ Rnp×np with P = PT and C ∈ Rnc×nc with C = CT , for any spectral decomposition P =

UpDpU
T
p and C = VcDcV

T
c , λ ∈ [0, 1], ∆ := D

[np]
c −Dp,

1

λ2

(
‖P‖2 +

1

np
tr (P )

2

)
+

1

np
(tr(∆))

2
> ‖∆‖2, (2)

the minimization problem (1) has solutions W ∗ ∈ S with singular value decomposition W ∗ = UpDwV
T
c , where

dw,ii =
√

max ((1− λ)dp,ii + λdc,ii − γ, 0) (3)

for i ≤ np. For dw,ii = 0, the corresponding columns of Uw and Vw are not restricted to eigenvectors of P and C. The
eigenvalues of C are ordered so that Dc = Dc,π , where the permutation solves the minimization problem

π = argminπ′∈P
λ(1− λ)

2
‖Dp −D

[np]
c,π′‖

2 − λ

2
‖D[np]

c,π′‖
2 + (1− λ)γ tr

(
D

[np]
c,π′

)
. (4)

Proof of Theorem 1. It is easy to verify that the gradient of the objective

f(W ) =
(1− λ)

4
‖WWT − P‖2 +

λ

4
‖WTW − C‖2 +

γ

2
‖W‖2 (5)

is given by

∇f(W ) = WWTW − (1− λ)
1

2
(P + PT )W − 1

2
λW (C + CT ) + γW,

which is zero at the extrema of the objective. Note that even for non-symmetric P and C, we could solve the problem for
the symmetric (P + PT )/2 and (C + CT )/2. Let us rewrite the gradient with respect to a singular value decomposition of
W = UwDwV

T
w

0 = ∇f(W ) = UW
[
DwD

T
wDw − (1− λ)UTwPUwDw − λDwV

T
w CVw + γDw

]
V Tw

. Hence, (1− λ)UTw (P − γI)UwDw + λDwV
T
w (C − γI)Vw = D needs to be a diagonal matrix so that W can be an optimum.

Clearly, for Uw = Up and Vw = Vc, we have

0 = DwD
T
wDw − (1− λ)DpDw − λDwDc + γDw

and solving for Dw leads to dw,ii = 0 or dw,ii =
√

(1− λ)dp,ii + λdc,ii, where we follow the convention that the singular
values of a matrix are positive.

The question remains whether additional zeros of the gradient exist for which A = (1 − λ)UTw (P − γI)Uw and B =
λV Tw (C − γI)Vw are not diagonal matrices but ADw +DwB is. As we prove next, this is only possible if W does not have a
simple spectrum so that dw,ii = dw,jj for some j 6= i.
W is a local minimum iff ADw + DwB = DwD

T
wDw. Hence, dw,ii = 0 or dw,ii =

√
aii + bii following the convention

that singular values are positive. For off-diagonal elements we have

0 = aijdw,ii + bijdw,jj (6)

Adding the elements corresponding to ij and ji and using the symmetry of A and B we receive 0 = aij(dw,ii + dw,jj) +
bij(dw,ii + dw,jj) and thus aij = −bij if at least one dw,ii 6= 0 or dw,jj 6= 0. Plugging this relation back into Eq. (6) leads to
0 = aij(dw,ii − dw,jj). For dw,ii 6= dw,jj , it follows that aij = aji = 0 and likewise bij = bji = 0. Therefore, if W has a
simple spectrum with non-zero eigenvalues, UTwUp and V Tw Vc must be permutation matrices and W of the claimed structure.

So far we have determined the extrema of the objective but which are the global minima? To answer this question, we
have to evaluate the objective function, which is f(W ) = (1 − λ)/4‖P − UwDwD

T
wUw‖2 + λ/4‖C − VwDT

wDwV
T
w ‖2 +

γ/2‖UWDwV
T
w ‖2 for any W = UwDwV

T
w . With∇f(W ) = 0 so that dw,ii =

√
aii + bii for i ≤ np, this becomes

f(W ) =
λ(1− λ)

4
‖Ã− B̃[np]‖2 +

λ

4

(
‖C‖2 − ‖D[np]

c ‖2
)

+
γ

2
(λ tr(Dp) + (1− λ) tr(Dnp

c ))− γ2

4
np, (7)



where we define Ã = A/(1− λ) = UTw (P − γI)Uw and B̃ = B/λ = V Tw (C − γI)Vw and use properties of the l2 norm and
the trace, for instance, that both are invariant under multiplication with orthogonal matrices. Furthermore, we make use of the
property ‖M‖2 =< M,M > with respect to the usual l2 scalar product < M,N >=

∑
i,j i
′, j′mijni′j′ for matrices M and

N of the same dimensions. The next step is to simplify

‖Ã− B̃[np]‖2 =
1

λ2
(
‖P − γI‖2 + ‖DwD

T
w‖2 − 2 < DÃ, DwD

T
w >

)
, (8)

which is the only part of the objective that distinguishes different minima with the same ordering of C’s eigenvalues. We
are particularly interested in comparing two cases: (i) W refers to a spectral decomposition of P and C so that Uw = Up
and Vw = Vc. (ii) dw,ii = tr

(
A+B[np]

)
/np for all i ≤ np, which allows for non-zero off-diagonal elements of A and

minimizes ‖DwD
T
w‖2. Note that the following derivations and arguments would also apply to a combination of (i) and (ii),

where A+B[np] is comprised of different blocks that are of form (i) or (ii) for a subset of the eigenvalues.
In case (i), we have

‖Ã− B̃[np]‖2 = ‖UTwUp(Dp − γI)UTp Uw −
(
V Tw Vc(Dc − γI)V Tc Vw

)[np] ‖2 = ‖Dp −D[np]
c ‖2 = ‖∆‖2.

For case (ii), we utilize representation (8). With ‖DwD
T
w‖2 = npd

2
w,11 = tr

(
A+B[np]

)2
/np =(

tr(P )(1− λ) + λ tr(D
[np]
c )− γnp

)2
/np and < DÃ, DwD

T
w >= d2w,11 < DÃ, I >= d2w,11 tr

(
Ã
)

=

d2w,11 (tr(P )− γnp), we obtain

‖Ã− B̃[np]‖2 =
1

λ2
‖P‖2 +

1

λ2np
tr(P ) +

1

np
tr(∆)2.

In consequence, a global minimum is achieved by (i) in case that ‖∆‖2 < ‖Ã−B̃[np]‖2 = 1
λ2 ‖P‖2+ 1

λ2np
tr(P )+ 1

np
tr(∆)2,

which proves Condition (2). The optimal matching of eigenvalues of P and C is then given by minimizing f(W ), which is for
(i):

min
π
f(W )

= min
π

λ(1− λ)

4
‖Dp −D[np]

c,π ‖2 +
λ

4

(
‖C‖2 − ‖D[np]

c ‖2
)

+
γ

2
(λ tr(Dp) + (1− λ) tr(Dnp

c ))− γ2

4
np

= min
π

λ(1− λ)

2
‖Dp −D[np]

c,π ‖2 −
λ

2
‖D[np]

c ‖2 + (1− λ)γ tr(Dnp
c ),

where we keep only the terms that are affected by a permutation of the eigenvalues π. This derives Eq. (4) and concludes the
proof.

Network recovery
Let Φ denote the cumulative distribution function (cdf) of a standard normal and X ∼ Ber(p) a Bernoulli random variable with
success probability p.
Proposition 2. Assume that we observe P = W ∗TW ∗,C = W ∗W ∗T , andW0 = W ∗+E for a true underlyingW ∗ ∈ Rnp×np

and noise E ∈ Rnp×np with independent identically normally distributed components eij ∼ N
(
0, σ2

)
. Further assume that P

and C have a simple spectrum {d1, . . . , dnp}. Then, for the spectral approach Ŵ = argminW∈S‖W −W0‖2 with γ = 0, the
recovery loss is distributed as ‖Ŵ −W ∗‖2 = 4

∑np

i=1 d
2
iRi, where Ri ∼ Ber (Φ (−di/σ)) for di > 0 and Ri = 0 for di = 0

are independent. For any ε > 0, it thus holds with the usual Chernoff bound:

P
(
‖Ŵ −W ∗‖2 ≤ ε

)
≥ 1− exp

(
ε− µ− ε

4
δ log

(
ε

µ

))
,

where µ =
∑
i pi and δ = 1

maxi(d2w,ii)
for ε ≤ µ and δ = 1

mini(d2w,ii)
otherwise.

Proof of Proposition 2. We assume that the root W is of the form UDwDsV
T , where we know U = Up, V = Vc, and Dw

and want to infer the signs Ds with ds,ii ∈ {−1, 1} for i ≤ np. With the input W0 = W ∗ + E, where the noise E ∈ Rnp×np

has independent identically normally distributed components eij ∼ N
(
0, σ2

)
, the spectral approach leads to the estimate

d̂s,ii = sign

∑
k,l

ukiw0,klvli

 = sign

∑
k,l

uki(w ∗kl +ekl)vli

 = sign

dw,iid
∗
s,ii +

∑
k,l

ukieklvli

 .



To estimate the risk of an error, we therefore need to derive the joint distribution of the random deviations xi =
∑
k,l ukieklvli.

As the ekl ∼ N
(
0, σ2

)
are iid, also their linear combinations xi are jointly normally distributed with i = 0 and covariance

E(xixj) = E

 ∑
k,l,k′,l′

ukiuk′jvlivl′jeklek′l′

 =
∑
k,k′

ukiuk′j
∑
l,l′

vlivl′jE (eklek′l′)

=
∑
k,k′

ukiuk′j
∑
l,l′

vlivl′jσ
2δk,k′δl,l′ = σ2

∑
k

ukiukj
∑
l

vlivlj = σ2δij,

since U and V are orthogonal and thus also their columns. Thus, X = (x1, . . . , xnp
) ∼ N

(
0, σ2I

)
. This allows us to

derive the distribution of the sign errors Ri, which are defined as Ri = 1 if d̂s,ii 6= d∗s,ii and Ri = 0 otherwise. Thus,
Ri =

(
1− sign

(
dw,iid

∗
s,ii + xi

)
d∗s,ii

)
/2. It follows that these are independent Bernoulli random variables Ri ∼ Ber(pi) with

probability pi = P (xi ≤ −dw,ii) = Φ (−dw,ii/σ). Consequently, we have a higher error probability for small singular values
dw,ii.

It is left to show how these sign errors affect the network recovery loss

‖Ŵ −W ∗‖2 =
∑
i

d2w,ii

(
d̂s,ii − d∗s,ii

)2
= 4

∑
i

d2w,iiRi ≤ 4d2w,11
∑
i

Ri,

where we assume that the singular values are ordered so that d2w,ii ≥ d2w,jj for i < j. Hence, for all ε > 0 we get

P
(
‖Ŵ −W ∗‖2 ≤ ε

)
= P

(∑
i

Rid
2
w,ii ≤

ε

4

)
≥ 1−min
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(
−ε/4t+ E

(
t
∑
i

Rid
2
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= 1−min
t>0

exp

(
− ε

4
t+
∏
i

(
1− pi + pie

d2w,iit
))
≥ 1−min

t>0
exp

(
− ε

4
t+
∑
i

pi(e
td2w,ii − 1)

)

≥ 1− exp

(
ε− µ− ε

4
δ log

(
ε

µ

))
for t = δ log (ε/µ), where µ =

∑
i pi and δ = 1

maxi(d2w,ii)
for ε ≤ µ and δ = 1

mini(d2w,ii)
otherwise.

Gradient dynamics
From a theoretical perspective, we can understand the gradient dynamics for specific choices W0 as initialization. For this
purpose, we take the continuous time (for infinitesimally small step size) approximation and study the corresponding gradient
flow:

τ
dW

dt
= −∇f(W ) = −WWTW + (1− λ)PW + λWC − γW, (9)

where we set the time unit τ = 1 in the following for simplicity. If the initial W0 has a similar singular value decomposition as
a solution, the differential equation decouples and we can solve the resulting one-dimensional ordinary differential equations
for the diagonal elements explicitly.

Proposition 3. For initial W0 = UpD0V
T
c with UpDpU

T
p and VcDcV

T
c , the solution of the gradient flow (9) is given by

W (t) = UpDtV
T
c with

dt,ii = sign(d0,ii)dw,ii

√√√√1

2
h

(
d2
w,iit + h−1

(
2

d2
0,ii

d2
w,ii

− 1

))
+ 1,

where h(x) = tanh(x) if d20,ii < d2w,ii and h(x) = coth(x) otherwise.

Proof of Proposition 3. We start from the actual gradient descent, whose updates are discrete in time and given by

W (t+ 1) = W (t)− η∇f(W )

with W (0) = UpD0V
T
c and learning rate η > 0. We prove inductively that W (t) has singular value decomposition

W (t) = UpD(t)V Tc (where we also allow for negative singular values). Hence, only the singular values change over time
while Uw = Up and Vw = Vc stay constant. Initially, the induction hypothesis is fulfilled according to our assumption,
as W (0) = UpD0V

T
c . The induction step assumes that W (t) = UpD(t)V Tc . Then, W (t + 1) = W (t) − η∇f(W ) =



UpD(t)V Tc − ηUp
[
D(t)D(t)TD(t)− (1− λ)DpD(t)− λD(t)Dc + γD(t)

]
V Tc . Thus, W (t + 1) = UpD(t + 1)V Tc with

diagonal D(t+ 1) = D(t)− η
[
D(t)D(t)TD(t)− (1− λ)DpD(t)− λD(t)Dc + γD(t)

]
.

The structure of the differential equation is preserved in the limit of infinitesimal stepsize η to obtain the gradient flow:
dD

dt
= −DDTD + (1− λ)DpD(t) + λD(t)Dc − γD(t)

so that W (t) = UpD(t)V Tc . Thus, the differential equations are decoupled and the problem is reduced to solving np 1-
dimensional differential equations of the form dx

dt = −x3 + µx, where µ depends on the respective equation as µi = (1 −
λ)dp,ii + λdc,ii − γ = d2w,ii. We can solve this type of equation by rewriting it as

x
dx

dt
=

1

2

dx2

dt
= −x4 + µx2.

With a change of variable s = x2, this becomes ds
dt = 2s (µ− s) so that we can simply integrate∫ x2(t)

x2(0)

1
µ2

4 −
(
(s− µ

2

)2 ds = 2

∫ t

0

dt′.

This results in

x2(t) =
µ

2

[
1 + h

(
µt+ h−1

(
2
x2(0)

µ
− 1

))]
,

where h = tanh if x20 < µ and h = coth otherwise. In both cases, x2(t) does not pass 0 during its evolution. This is relevant,
since we have an ambiguity in the sign of x(t) when we know only x2(y). Passing through 0 would have been the only option
for x(t) to switch signs. Therefore, x(t) = sign(x(0))

√
(x2(t)) inherits the sign of the initial value. Identifying x(t) with d(t)i

and µ = d2w,ii concludes the proof.

Correspondence of OTTER to PANDA
PANDA (Passing Attributes between Networks for Data Assimilation) (Glass et al. 2013) is based on the intuition that a gene
regulatory matrix W should be the joint root of the gene-gene interaction matrix C and the protein-protein interaction matrix
P , i.e. WTW ≈ P and WWT ≈ P . This is realized within a message passing framework that iteratively modifies the matrices
C, P , and W0 in discrete time steps t as:

P (t+ 1) = (1− α)P (t) + α
W (t)WT (t)

r(W (t),WT (t))
, (10)

C(t+ 1) = (1− α)C(t) + α
WT (t)W (t)

r(WT (t),W (t))
, (11)

W (t+ 1) = (1− α)W (t) + α
1

2

(
P (t)W (t)

r(P (t),W (t))
+

W (t)C(t)

r(W (t), C(t))

)
, (12)

where r denotes a centralization factor r(M,N) :=
√
‖M‖2 + ‖N‖2 − | < M,N > | that prevents exploding matrix entries

and α ∈ [0, 1] is a tuning parameter that is set to α = 0.05 as a default.
In the following, we will discuss how OTTER relates to the main idea of PANDA and ignore the factor r(·, ·), as such a

scaling is handled differently by the ADAM gradient descent algorithm. As a reminder, the OTTER gradient descent updates
are given by

W (t+ 1) = W (t)− ηγW (t)− ηW (t)WT (t)W (t) + η(1− λ)P (0)W (t) + ηλW (t)C(0). (13)
We claim that these are similar to the PANDA update

W (t+ 1) = (1− α)W (t) + α
1

2
(P (t)W (t) +W (t)C(t)) . (14)

At first glance, we can identify already the first two terms W (t)− ηγW (t) and (1−α)W (t) for α = ηγ. It would be tempting
to match also the last two P (t)W (t) + W (t)C(t). Yet, a noticeable difference is that PANDA updates P (t) and C(t) while
OTTER keeps them fixed to the input. While we cannot resolve this difference completely, we can capture the dependence
of P (t) and C(t) on W (t) more adequately. From Eq. (10) we can deduce P (t) = 1

1−α
(
P (t+ 1)− αW (t)WT (t)

)
and

C(t) = 1
1−α

(
C(t+ 1)− αWT (t)W (t)

)
and plug these into Eq. (14):

W (t+ 1) = (1− α)W (t) + α
1

2

1

1− α
(
P (t+ 1)W (t) +W (t)C(t+ 1)− 2αW (t)WT (t)W (t)

)
,

which looks almost like our OTTER update (13). Only the time dependence of P (t + 1) and C(t + 1) cannot be resolved
and remains a difference between the two approaches. Yet, considering that α is usually quite small α ≈ 0.05 − 0.1 and
PANDA takes often only 40 time steps in total, the difference between both approaches is small enough that theoretical insights
concerning OTTER should also reflect on PANDA.



Gene regulation
The central dogma of molecular biology describes the flow of information in a cell from DNA to RNA and finally to proteins.
DNA is the blueprint of the functional capacity of a cell, and has certain regions - genes - that can be considered functional
units. Each gene codes for a specific protein, which, when produced, performs a specific function in the cell. Gene regions in
double-stranded DNA are transcribed to a single-stranded mRNA transcript molecule that serves as a template for the protein
construction. The mRNA transcript is then translated into the corresponding protein. The extent to which a protein is expressed,
as measured by protein abundance, thus depends (in part) on the extent to which the gene is expressed (transcribed) and the
abundance of the corresponding mRNA. The regulation of genes, including under which conditions and to what degree they
are expressed, defines a cell’s to respond to environmental stimulus, helps define and distinguish individual tissues, allows
for developmental processes to occur, and mediates the development and progression of diseases, including their response to
theapies. Transcription factors are proteins within the cell that bind to the DNA in “promoter regions” of individual genes
and regulate the expression of that gene by recruiting the “transcriptional machinery” to allow mRNA to be synthesized (for
a useful review on gene regulation, see (Todeschini, Georges, and Veitia 2014)). Different transcription factors (TFs) regulate
different genes in a many-to-many relationship, and sometimes require co-operativity with each other TFs (Figure S1 A). We
can represent the regulatory relationships between TFs and genes as a bipartite network (Figure S1 B). Because the TFs are
themselves encoded by genes in the genome, the entire regulatory network represents a complex, adaptive system. Differences
between biological states, such as between health and disease, are determined by activation or repression of individual regulatory
edges between TFs and genes. Because every cell must carry out some basic functions, including respiration and metabolic
processes, much of the network active in any two cells will be identical. It is often the small differences in GRN structure
between states that define those states.

Datasets for gene regulatory network inference
We demonstrate the functionality of OTTER on three cancer datasets from The Cancer Genome Atlas
(https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) representing tumors of the liver,
cervix, and breast.

Cancer gene expression data
Gene expression data in The Cancer Genome Atlas (TCGA) (Tomczak, Czerwińska, and Wiznerowicz 2015) was downloaded
from recount2 (Collado-Torres et al. 2017) at https://jhubiostatistics.shinyapps.io/recount/ on 01/10/2020.

Defining the dimensions of C and P
For each tissue, we need to define the dimensions of C and P , namely the set of TFs [np] = {1, . . . , np} and the set
of genes [nc] = {1, . . . , nc}, respectively. A list of all known TF gene names and ENSEMBL ids was downloaded from
http://humantfs.ccbr.utoronto.ca/download/v 1.01/TFs Ensembl v 1.01.txt and http://humantfs.ccbr.utoronto.ca/download/v 1.
01/TF names v 1.01.txt on 03/09/2020. The reshape R package (Collado-Torres et al. 2017) was used to normalize gene ex-
pression measurements as Transcripts Per Million (TPM), which accounts for biases introduced by sample read depth and gene
length. For each tissue, we removed genes with consistently low expression, having a TPM ≤ 0.25 across at least 80% of the
samples. This resulted in gene sets of size nc = 31, 247 for breast tissue, nc = 30, 181 for cervix tissue and 27, 081 for liver
tissue.

Transcription factors were found to have, on average, lower expression than other genes (Figures S1-S3), thus, to include a
transcription factor in our analysis, we only required that the transcription factor was expressed with a standard deviation > 0.
All 1,637 were expressed in all tissues, making np = 1, 637 for breast, cervix and liver tissues.

We made the gene expression data after processing available for download at https://netzoo.s3.us-east-
2.amazonaws.com/supData/otter/DataS1 Breast/tcga breast TPM otter.txt, https://netzoo.s3.us-east-2.amazonaws.com/
supData/otter/DataS1 Breast/tcga cervix TPM otter.txt, and https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/
DataS1 Breast/tcga liver TPM otter.txt. Row and column names of the matrix are available on the same homepage at
https://netzoo.github.io/zooanimals/otter/.

Constructing C, P and W0

Gene co-expression matrix, C For each tissue, the gene co-expression matrix, representing genes likely co-regulated, was
constructed by calculating the Pearson correlation coefficient between all pairs of genes. This resulted in the square matrix
C, with dimension nc = 31, 247 for breast tissue, nc = 30, 181 for cervix tissue and 27, 081 for liver tissue. For each
tissue, we made it available for download at https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/corBreast.csv, https:
//netzoo.s3.us-east-2.amazonaws.com/supData/otter/corCervix.csv, and https://netzoo.s3.us-east-2.amazonaws.com/supData/
otter/corLiver.csv.
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Protein-protein interaction matrix, P A list of protein-protein interactions used in (Sonawane et al. 2017) was downloaded
from https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/gtex-networks on 09/09/2019. These protein-protein
interactions were filtered to those involving transcription factors, and used to populate the np × np PPI matrices P . Pairs of
TFs for which no interaction data was available were set to 0. P is identical for all tissues and available for download at
https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/PPI matrix breast.txt.

Motif-based GRN prior, W0 The initial estimate W0 of the gene regulatory network is constructed based on TF motif
information. The FIMO software (Grant, Bailey, and Noble 2011) from MEME suite (Bailey et al. 2009) was used to scan
the hg38 human genome assembly for known TF motifs - sequences which are predicted to be bound by specific TFs. Motif
matches with a p-value ≤ 10−4 were considered significant. The positions and IDs of Ensembl genes in the hg38 genome
assembly were downloaded from the UCSC Table browser https://genome.ucsc.edu/cgi-bin/hgTables on 11/13/2019, and from
https://www.gencodegenes.org/human/ on 03/09/2020. Gene promoter regions were defined as the 1000bp (base pair) region
[-750bp, +250bp] around the gene’s annotated transcriptional start site, taking into account the strand on which the gene resides.
The GenomicRanges R package (Lawrence et al. 2013) was used to overlap motif hits with gene promoters, resulting in a set
of TF-gene associations, indicating that a motif of a TF was found overlapping with the promoter region of a gene. These
associations were then used to populate the np × nc matrix W0 with W0[ij] = 1 if the motif of TF i was found in the promoter
of gene j and W0[ij] = 0 otherwise.

They are available for download at https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/DataS1 Breast/motif prior
matrix breast.txt, https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/DataS1 Breast/motif prior matrix cervix.txt, and
https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/DataS1 Breast/motif prior matrix liver.txt.

ChIP-seq experimental data for validation
Chromatin immunoprecipitation (ChIP)-seq is a technique that allows for the experimental identification of protein-DNA in-
teractions, and can thus provide a validation data set for TF binding of gene promoters. ChIP-seq experiments are performed
individually per TF, and thus, one can only obtain binding site information for TFs that have specifically been studied before
with this technique. ChIP-seq data consisting of the genome-wide binding regions of select TFs for the HeLa cervical cancer
cell line (48 TFs), HepG2 liver cancer cell line (77 TFs) and MCF7 breast cancer cell line (62 TFs) were downloaded from the
ReMap2018 database http://pedagogix-tagc.univ-mrs.fr/remap/ on 01/15/2020. These cell lines represent the closest tissues to
those of the expression data for which ChIP-seq data was available. We recognize that many cancers have distinct subtypes that
often differ substantially from one-another; we ignore those subtypes given the limitations of the available data and recognizing
that subtype differences will be smaller than differences between cervix, liver, and breast tumors ChIP-seq-determined binding
regions for each TF in each cell line were mapped to the promoter regions of genes in the same manner as described for motif
regions. This allowed us to construct a validation regulatory subnetwork, allowing us to validate the our predicted regulatory
relationships from OTTER (and other GRN estimation methods) for the portion of TFs for which ChIP-seq data was available.
Precision-recall and ROC curves were calculated using the precrec R package (Saito and Rehmsmeier 2017).

The data is available for download at https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/DataS1 Breast/
chipseq postive edges breast.txt, https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/DataS1 Breast/chipseq postive
edges cervix.txt, and https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/DataS1 Breast/chipseq postive edges liver.txt.

Algorithms and model parameters
The best performing method is based on ADAM gradient descent (Kingma and Ba 2014) as stated below.

Algorithm 1: ADAM gradient descent.
Inputs: W , P , C,∇f(·)
Parameters: η (learning rate), I (number of iterations)
β1 = 0.9; β2 = 0.999; ε = 0.00000001;
β1,t = β1; β2,t = β2;
m = 0; v = 0;
for i = 1, . . . , I do
m = β1m+ (1− β1)∇f(W,P,C);
v = β2v + (1− β2)(∇f(W,P,C))2;
β1,t = β1,tβ1; β2,t = β2,tβ1;

α = η

√
1−β2,t

1−β1,t
;

εt = ε
√

1− β2,t;
W = W − α m

εt+
√
v

;
end for

https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/gtex-networks
https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/PPI_matrix_breast.txt
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https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/DataS1_Breast/motif_prior_matrix_liver.txt
http://pedagogix-tagc.univ-mrs.fr/remap/
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https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/DataS1_Breast/chipseq_postive_edges_liver.txt


We adapt the learning rate η, exponent b, the number of iterations I and the parameters of the gradient for each method that
can also take different transformations of the original matrices P0, C0, W0 into account. Our specific choices are listed in
Table S1. The respective gradients are defined as ∇f = 4WWTW − 4(1 − λ)PW − 4λWC + 2γW for OTTER, ∇f =
P 2W + WC2 − 2PWC + γW for QAP, and ∇f = P 2W + WC2 − 2PWC + γW − δJ for GRAMPA. The remaining
methods are parameterized as follows. OTTER (spectral) uses the parameters µ = 0.0043208 and λ = 0.99498, while the one
based on transformed inputs uses µ = 0.335 and λ = 0.0035. GENIE3 and TIGRESS have been computed only with respect to
transcription factors that meet the gene expression filter criterion. Accordingly, we have also restricted the validation to those
transcription factors. This was meant to make the task easier but the algorithms still showed inferior performance with respect
to binding prediction. We used the default parameters, i.e. random forests consisting of 1000 trees and K =

√
p for GENIE3

and nstepsLARS = 5, α = 0.2, and nsplit = 100 for TIGRESS. Furthermore, we had to restrict TIGRESS and PAR COR to
the much smaller number of transcription factors in our validation set to reduce the computational load.

Computational complexity
OTTER GRAD computes T gradient steps (with T = 60). Each step costs O(npn

2
c) computations. (Most expensive is the

multiplication WC). In total, we have a complexity of O(Tnpn
2
c). Yet, the matrix multiplications and additions can be effi-

ciently parallelized depending on the number of available cores. The inference of a GRN in Matlab takes 20− 30 minutes on a
MacBook Pro with 2.9 GHz Intel Core i9 processor and 32 GB 2400 MHz DDR4 memory. This represents a reasonable time
in comparison with other methods.

Biological validation
In order to determine whether OTTER networks capture expected biological functional information, we constructed an OT-
TER network representing healthy liver and cancerous liver, and investigated the biological functions enriched in areas of the
networks which differ between cancer vs. healthy expression data.

A similar process as described above was used to construct process gene expression data and construct OTTER networks.
The healthy OTTER network was constructed making use of liver gene expression data from The Genotype Tissue Expres-
sion Project (GTEx) (Lonsdale et al. 2013), whereas the cancer network was constructed using expression data from TCGA
(Tomczak, Czerwińska, and Wiznerowicz 2015). Both gene expression datasets were downloaded from recount2 (Tomczak,
Czerwińska, and Wiznerowicz 2015).

From the resulting OTTER networks, a difference network was constructed by taking the absolute value of the difference
between corresponding edge weights of the two networks. Lastly, we calculated TF degrees and gene degrees in the resulting
difference network, allowing genes and TFs to be ranked by these degrees. Genes/TFs with high “difference degree” are thus
those whose neighboring edges have large differences between healthy and cancer networks.

GOrilla (Eden et al. 2009) was then used to determine which Gene Ontology (GO) biological process terms were enriched
in the top of the ranked lists vs the bottom, thus determining which biological functions are enriched in those genes/TFs.
Enrichment results (Figures S8 and S9, Tables S2, S3) highlighted several expected cancer-related functions and pathways,
including cell differentiation, cell-cell adhesion, generation of precursor metabolites and energy, regulation of cell development,
cell migration and cell motility. OTTER networks thus capture expected biological signal related to the context of the gene
expression data. Note that some of the related tables and figures are not included in this pdf because they are too large to attach
them to this file directly but can be found with the provided links.

Supplementary Figures and Tables

Figure S1: Gene regulation. A. Transcription factors (TFs) are represented by green, blue, and yellow objects that bind to the
genome (gray band) in vicinity of the start site of a gene (black error) to regulate its expression. B. Representation of A as
bipartite gene regulatory network.



Figure S2: TPM distributions for breast tissue.

Figure S3: TPM distributions for cervix tissue.

Figure S4: TPM distributions for liver tissue.
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Figure S5: Performance curves for breast.
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Figure S6: Performance curves for cervix.
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Figure S7: Performance curves for liver.

Figure S8: Gene Ontology (GO) term enrichment visualization for healthy (GTEx) vs cancerous (TCGA) liver tissue gene
differential degree. Enrichment performed and visualized using GOrilla (Eden et al. 2009). See file FigureS7.png:https:
//netzoo.s3.us-east-2.amazonaws.com/supData/otter/Supplementary Figures.zip

https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/Supplementary_Figures.zip
https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/Supplementary_Figures.zip


Figure S9: Gene Ontology (GO) term enrichment results for healthy (GTEx) vs cancerous (TCGA) liver tissue TF differ-
ential degree. Enrichment performed using GOrilla (Eden et al. 2009). See file FigureS7.png: https://netzoo.s3.us-east-
2.amazonaws.com/supData/otter/Supplementary Figures.zip

https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/Supplementary_Figures.zip
https://netzoo.s3.us-east-2.amazonaws.com/supData/otter/Supplementary_Figures.zip


Table S1: Parameters for models taking P and W0 into account.

INPUTS PARAMETERS
W P C η I γ MISC.

GRAMPA GRAD W0/
√

tr(W0WT
0 ) P0/ tr(P0) C0/ tr(C0) 0.00001 4 0.35 δ = 0.00001

QAP GRAD W0/
√

tr(W0WT
0 ) P0/ tr(P0) C0/ tr(C0) 0.00001 17 0.35 -

OTTER GRAD W0/
√

tr(W0WT
0 ) P0/ tr(P0) C0/ tr(C0) 0.00001 60 0.335 λ = 0.035

PANDA W0 P0 C0 - 40 - α = 0.1

Table S2: Gene Ontology (GO) term enrichment results for healthy (GTEx) vs cancerous (TCGA) liver tissue gene differential
degree. Enrichment performed using GOrilla (Eden et al. 2009). See TableS2.xlsx: https://netzoo.s3.us-east-2.amazonaws.
com/supData/otter/Supplementary Tables.zip

Table S3: Gene Ontology (GO) term enrichment results for healthy (GTEx) vs cancerous (TCGA) liver tissue TF differential
degree. Enrichment performed using GOrilla (Eden et al. 2009). See TableS3.xlsx: https://netzoo.s3.us-east-2.amazonaws.
com/supData/otter/Supplementary Tables.zip

Supplementary Data
The supplementary data can be found at https://netzoo.github.io/zooanimals/otter/. The inferred networks are available for
download at https://grand.networkmedicine.org/cancers/.
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